
Relaxation of the protein electron spin is an im-
portant parameter to characterize the environment,
including information on molecular dynamics.
Here, we deduced the longitudinal relaxation time
of the spin label from Fig. 4B. The red circles de-
note the interaction signal between the NV center
and the spin label; the black dots show the NV
center decoherence curvewithout operation on the
spin label. Simulation (solid curves) shows a relax-
ation time of 4 ms. These values are compatible
with those for spin labels inensemblemeasurements,
as the relaxation time of this kind of spin label
is ~110 ms at liquid nitrogen temperature (21, 24).
The ability to address single-electron spin la-

bels on proteins adds another element to the
emergingdiamond sensor–based toolbox for ultra-
precise structure determination. Together with
the recently established nuclear magnetic reso-
nance (NMR) detection, the present method ex-
tends the sensing range to dozens of nanometers,
whereas diamond sensor–basedNMRonly senses
nuclear spins in very close proximity (a few na-
nometers) to the NV center (26–29). The interac-
tion between the spin label and the neighboring
nuclei could be used to sensemore distant nuclei
and provide structural and dynamical informa-
tion otherwise inaccessible by the sensor. In this
respect, it is particularly encouraging that we
find long spin relaxation times enabling coher-
ent spin driving at the protein. This capability
will allow the use of the ancillary electron spin
for sophisticated coherent control (30, 31), there-
by facilitating future polarization transfer experi-
ments that could gain access to nuclear spins in
proteins, including proton or 13C spins. When
combined with either scanning magnetometry
or nanoscale magnetic resonance imaging based
on magnetic field gradients, protein structure
analysis under ambient conditions at the level of
a single molecule is within reach (32, 33).
.
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BRAIN STRUCTURE

Cell types in the mouse cortex and
hippocampus revealed by
single-cell RNA-seq
Amit Zeisel,1* Ana B. Muñoz-Manchado,1* Simone Codeluppi,1 Peter Lönnerberg,1

Gioele La Manno,1 Anna Juréus,1 Sueli Marques,1 Hermany Munguba,1 Liqun He,2

Christer Betsholtz,2,3 Charlotte Rolny,4 Gonçalo Castelo-Branco,1

Jens Hjerling-Leffler,1† Sten Linnarsson1†

The mammalian cerebral cortex supports cognitive functions such as sensorimotor integration,
memory, and social behaviors. Normal brain function relies on a diverse set of differentiated
cell types, including neurons, glia, and vasculature. Here,we have used large-scale single-cell RNA
sequencing (RNA-seq) to classify cells in themouse somatosensory cortex and hippocampal CA1
region.We found 47molecularly distinct subclasses, comprising all knownmajor cell types in the
cortex.We identified numerous marker genes, which allowed alignment with known cell types,
morphology, and location.We found a layer I interneuron expressing Pax6 and a distinct
postmitotic oligodendrocyte subclass marked by Itpr2. Across the diversity of cortical cell types,
transcription factors formed a complex, layered regulatory code, suggesting amechanism for the
maintenance of adult cell type identity.

T
he brain is built from a large number of
specialized cell types, enabling highly re-
fined electrophysiological behavior, as well
as fulfilling brain nutrient needs and defense
against pathogens. Functional specialization

allows fine-tuning of circuit dynamics and decou-
pling of support functions such as energy supply,
waste removal, and immune defense. Cells in the
nervous system have historically been classified
using location, morphology, target specificity, and
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Fig. 4. Coherence and relaxation of protein spin. (A) Rabi oscillation of single spin label measured by
using the sequence in Fig. 1B (fixing t0 and RF frequency at middle peak, varying t). The solid curve is a fit
using a sine function with exponential damping. (B) The red circles are measured by the double electron-
electron resonance sequences on NV sensor and protein spin (fixing t equal to spin label p pulse and RF
frequency to the central peak, varying t0).The black dot is the NVcenter decoherence curve without protein
spin flipping. The solid curves show the best simulation of both of the experimental results in (B), corres-
ponding to a relaxation time of 4 ms for the spin label and 90 kHz coupling between spin label and NVcenter.
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electrophysiological characteristics, often combined
with molecular markers (1–5). Systematic in situ
hybridization has revealed extensive regional
heterogeneity (6). However, none of these prop-
erties carry enough information to result, in every
case, in adefinitive cell type identification (7). Single-
cell RNA sequencing (RNA-seq) has been used to
classify cells in spleen (8), lung epithelium (9), and
embryonic brain (10). However, the adult nervous
system has greater complexity andmore cell types,
presenting a challenge both to sample prepara-
tion methods and computational analysis.
Here, we have used quantitative single-cell

RNA-seq (11) to perform a molecular census of
the primary somatosensory cortex (S1) and the
hippocampal CA1 region, based on 3005 single-
cell transcriptomes (Fig. 1A and fig. S1, A to C).
Individual RNA molecules were counted using
unique molecular identifiers (UMIs) (essentially
tags that identify individual molecules) (12) (figs.
S1, D to J, and S2, A to E) and confirmed by
single-molecule RNA fluorescence in situ hybrid-
ization (FISH) (fig. S2, G to I).
We used clustering to discover molecularly

distinct classes of cells. Standard hierarchical
clustering resulted in fragmented clusters (fig.
S4), because most genes were not informative in
most pairwise comparisons and contributed at

best only noise. Biclustering can overcome this
problem by simultaneously clustering genes and
cells. We developed BackSPIN (see the supple-
mentary materials), a divisive biclustering method
based on sorting points into neighborhoods (SPIN)
(13), which revealed nine major classes of cells: S1
and CA1 pyramidal neurons, interneurons, oligo-
dendrocytes, astrocytes, microglia, vascular endo-
thelial cells, mural cells (that is, pericytes and
vascular smooth muscle cells), and ependymal
cells (Fig. 1, A and B, and fig. S3).
The data set allowed us to identify the most

specific markers for each class, many of which
are known to play a functional role in these cells
(fig. S5). S1 pyramidal cells were marked by Tbr1,
a transcription factor required for the final differ-
entiation of cortical projection neurons; oligoden-
drocytes by Hapln2, encoding a protein required
for proper formation of nodes of Ranvier; mural
cells by Acta2, a key component of actin thin fila-
ments; and endothelial cells by Ly6c1 [expressed
by monocytes peripherally, and endothelial cells
in the brain (14)]. Some were novel, such as
Gm11549 (a long noncoding RNA specific to S1
pyramidal neurons), Spink8 (a serine protease in-
hibitor specific to hippocampal pyramidal cells),
and Pnoc (prepronociceptin, here identified as an
interneuron marker).
By repeating biclustering on each of the nine

major classes (Fig. 1C and figs. S5 to S8), we iden-
tified a total of 47 molecularly distinct subclasses
of cells. Every subclass was detected in multiple
mice (fig. S1K), arguing that cell identity was
preserved across these genetically outbred (CD-1)
mice. Neurons contained more RNA than glia
and vascular cells and a larger number of detec-
table genes (Fig. 1C and fig. S1E). Mitochondrial
mRNAs were less variable, although mitochon-
drial tRNAs were highly specifically enriched in
endothelial cells (fig. S1E).

We identified seven subclasses of S1 pyramidal
cells (Fig. 2A and figs. S6A and S7), which were
largely layer-specific. The superficial layers II/III
and IV were represented by single populations,
whereas layer V showed two distinct subclasses.
Layers VI and VIb were represented by single
populations, but in addition we found a subclass
lacking specific markers but expressing common
deep-layer markers such as Pcp4. A distinct sub-
class expressed Synpr andNr4a2, which are abun-
dant in the adjacent claustrum, with some cells
extending into S1.
We found two types of CA1 glutamatergic cells

(fig. S8), plus cells derived from the adjacent CA2
(as defined by Pcp4) and subiculum (as defined
by Ly6g6e). Genes highly expressed in type 2 CA1
pyramidal neurons were associated with mito-
chondrial function (fig. S8), which has been shown
to correlate with the firing rate and length of pro-
jections in cortical neurons (15). Orthogonal to the
two main classes, we found CA1 layer–specific
markers (i.e., Calb1 and Nov), as well as dor-
soventrally patterned genes (i.e., Wfs1 and Grp)
(16), in both of the two main types of CA1 cells.
These may correspond to functional differences
between layers (17).
We found 16 subclasses of interneurons (Fig. 2B

and fig. S6, C and D), but there are likely more
subclassesbecauseweachievedonly shallowsampl-
ing of Sst- and Pvalb-expressing cells. In superficial
layers of S1, we identified an Htr3a- and Pax6-
expressing interneuron subclass, confirmed by
immunohistochemistry (Fig. 2C) [13.9 T 2.4% of
serotonin (5HT) receptor 3a-enhanced green flu-
orescent protein (5HT3aEGFP) cells in layer I,n=4
mice, 636 cells analyzed]. These interneurons spe-
cifically expressed Myh8, Fut9, and Manea. In
whole-cell current clamp recordings of layer I
neurons, subsequently stained for PAX6, these
cells exhibited intrinsic electrophysiological and
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Fig. 1. Molecular census of somatosensory S1 cortex and hippocampus
CA1 by unbiased sampling and single-cell RNA-seq. (A) Workflow for
obtaining and analyzing single-cell RNA-seq from juvenile mouse cortical cells,
from dissection to single-cell RNA-seq and biclustering. (B) Visualization of
nine major classes of cells using t-distributed stochastic neighbor embedding
(tSNE). Each dot is a single cell, and cells are laid out to show similarities.

Colored contours correspond to the nine clusters in (A) and fig. S3. Expression of known markers is shown using the same layout (blue, no expression; white,
1% quantile; red, 99% quantile). (C) Hierarchical clustering analysis on 47 subclasses. Bar plots show number of captured cells in CA1 and S1, number of
detected polyA+ RNA molecules per cell, and total number of genes detected per cell.
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morphological characteristics of late-spiking neu-
rogliaform cells (6 PAX6+ out of 40 recorded cells)
(Fig. 2D and fig. S6E). Pax6 is not expressed in the
ventral forebrain during development, further sug-
gesting that neurogliaform cells are developmen-
tally heterogeneous (18).
CA1 and S1 regions both contained interneu-

rons of almost every subclass (Fig. 2B), showing
that interneurons residing in functionally dis-
tinct cortical structures are transcriptionally closely
related. The two exceptions were cells expressing
Vip, Penk, Calb2, and Crh (which were confined to
S1) and cells expressing Lhx6, Reln, and Gabrd
[which were confined to CA1 and may be medial
ganglionic eminence–derived Ivy cells and neu-
rogliaform cells (18)].
Astrocytes formed two subclasses (Fig. 3A and

fig. S9A) distinguished by differential expression of
Gfap (type 1) andMfge8 (type 2). Immunostaining
showed that type 1 astrocytes were derived from

layer I, particularly from the glia limitans, a thin
layermadeupmostly of astrocytes that is arranged
against the pia (Fig. 3B). In contrast, type 2
astrocytes were more uniformly distributed in the
cortex and were smaller and less ramified.
We identified two types of immune cells:

microglia (the tissue-resident macrophages of
the brain) and perivascular macrophages. Al-
though closely related, these cell types have
distinct developmental origin (19). Both expressed
brain macrophage markers Aif1 and Cx3cr1,
whereas perivascular macrophages were dis-
tinguished by expression of Mrc1 and Lyve1,
characteristic of pro-angiogenic perivascular type
2 macrophages (20). Immunohistochemistry for
the corresponding proteins confirmed thatmicro-
glia (AIF1+/LYVE1–/MRC1–) had a classical, rami-
fiedmorphology andwere located throughout the
cortex (Fig. 3, D and E). In contrast, perivascular
macrophages (AIF+/LYVE1+/MRC1+)were located

only along vessels and showed an ameboid mor-
phology. They were distinct frommural and endo-
thelial cells (fig. S10). Comparison with peritoneal
macrophages confirmed their identity (fig. S9A).
The correlation between brain and peripheral
macrophages (0.67) was similar to that between
neurons and glia (0.62), underscoring the func-
tional divergence of this immune cell class.
Six subpopulations of oligodendrocytes were

identified (Fig. 3F and fig. S9C), likely represent-
ing stages of maturation: immature (Oligo4), pre-
myelinating (Oligo2), myelinating (Oligo5), and
terminally differentiated postmyelination (Oligo6)
oligodendrocytes. An intermediate population,
Oligo3, was almost exclusively observed in so-
matosensory cortex and may represent a distinct
cellular state specific for this tissue. The subclass
Oligo1, which did not express the prototypical
genes associated with oligodendrocyte precursor
cells (OPCs), may represent a postmitotic cellular
state, associated with the first steps of oligoden-
drocyte differentiation. Oligo1 cells expressed a
distinct set of genes, including Itpr2, Prom1,Gpr17,
Tcf7l2, 9630013A20Rik, Idh1, Cnksr3, and Rnf122.
Single-molecule RNA FISH confirmed that Itpr2
and Cnksr3 were expressed in strict subsets of
cells expressing Plp1, a pan-oligodendrocyte mark-
er (4.5% and 7.5%, respectively) (Fig. 3G). Together,
the Oligo1 to Oligo6 populations may repre-
sent sequential steps in the process of matura-
tion from an OPC to a terminally differentiated
oligodendrocyte.
Across this diverse set of cell types, we found

many transcription factors with highly restricted
expression patterns (Fig. 4A and supplementary
materials). For example, interneurons expressed
key interneuron regulators Dlx1, Dlx2, Dlx5, and
Arx, and pyramidal layer II/III neurons expressed
Neurog2, which can directly reprogram human
embryonic stem cells to excitatory neurons of layer
II/III phenotype with near 100% efficiency (21).
Lyl1 and Spic were specific to perivascular macro-
phages; Spic is essential for themaintenance of red
pulpmacrophages (22), suggesting that it may play
a similar role in brain perivascular macrophages.
Expanding this analysis to all genes, we found

extensive functional specialization between cel-
lular subclasses. Ependymal cells (multiciliated
cells lining the ventricles) expressed the largest
set of subclass-restricted genes, including trans-
cription factors Foxj1,Myb, and Rfx2, the master
regulators of motile ciliogenesis (23) (24), and
Zmynd10, which causes ciliopathy when mutated
in humans (25). Nearly every structural component
of ciliawas also represented (Fig. 4B), including the
2+9microtubule core and radial spokes, thedynein
and kinesin motors, the filamentous shell, the
basal body that anchors cilia to the cytoplasm,
and two adenylate kinases (Ak7 and Ak8) that
generate adenosine triphosphate energy sup-
porting cilia motility. Many of these structural
genes are directly regulated by Foxj1, Rfx2, or
Rfx3 (23, 26) (Fig. 4B).
In summary, our findings reveal the diversity

of brain cell types and transcriptomes. Across the
full set of cell types, transcription factors formed
a complex, layered regulatory code, suggesting a
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Fig. 2. Neuron subclasses in the somatosensory cortex. (A) Subclasses of pyramidal neurons in the
somatosensory cortex (S1) identified by BackSPIN clustering. Bar plots show mean expression of se-
lected known and novel markers (error bars show standard deviations). Layer-specific expression shown
by in situ hybridization (Allen Brain Atlas). S1PyrL23, layer II-III; S1PyrL4, layer IV; S1PyrL5a, layer Va;
S1PyrL5, layer V; S1PyrL6, layer VI; S1PyrL6b, layer VIb; S1PyrDL, deep layers; ClauPyr, claustrum.
(B) Identification of interneuron subclasses. Bar plots show selected known and novel markers. Fraction
of S1/CA1 cells is depicted at bottom: blue, S1; yellow, CA1; white, flow-sorted Htr3a+ cells from S1.
(C) Immunohistochemistry demonstrating the existence and localization of novel PAX6+/5HT3aEGFP+

interneurons, Int11. Bar plots show the layer distribution of these neurons. (D) Intrinsic electrophysiology
and morphology of PAX6+ interneurons in S1 layer I, identified by post hoc staining.
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Fig. 3. Characterization of glial subclasses. (A) Two
types of astrocytes (Astro1 and Astro2) identified by
common and distinct markers. (B) Immunohistochemistry
for glial fibrillary acidic protein (red, Astro1) and MFGE8
(green, Astro2). Scale bar, 50 mm. (C) Genes showing
expression restricted to microglia (Mgl), perivascular
macrophages (Pvm), and peritoneal macrophages (Pmac).
Error bars show standard deviations. (D) Cartoon illustrating
themorphology and localization of microglia and perivascular
macrophages. (E) Immunostaining for AIF1 (previously
known as Iba-1, blue) marking microglia, and for MRC1
(green) and LYVE1 (red) marking perivascular macrophages.
Asterisk, a microglia cell. Arrow, a perivascular macrophage
aligned to a vessel (not stained). Scale bar, 20 mm. (F) Heat
map showing progressive changes in gene expression along
oligodendrocyte differentiation, illustrated below. (G) Single-
molecule RNA FISH for Itpr2 and Cnksr3 mark a strict
subset of oligodendrocytes (as identified by Plp1). Scale
bar, 11 mm.
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plausible mechanism for the maintenance of
adult differentiated cell types. More broadly,
these results showcase the power of explorative
single-cell RNA-seq and point the way toward
future whole-brain and even whole-organism
cell type discovery and characterization. Such
data will deepen our understanding of the
regulatory basis of cellular identity, in devel-
opment, neurodegenerative disease, and regen-
erative medicine.
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FRESHWATER ECOLOGY

Experimental nutrient additions
accelerate terrestrial carbon loss
from stream ecosystems
Amy D. Rosemond,1* Jonathan P. Benstead,2 Phillip M. Bumpers,1 Vladislav Gulis,3

John S. Kominoski,1† David W. P. Manning,1 Keller Suberkropp,2 J. Bruce Wallace1

Nutrient pollution of freshwater ecosystems results in predictable increases in carbon (C)
sequestration by algae.Tests of nutrient enrichment on the fates of terrestrial organic C, which
supports riverine food webs and is a source of CO2, are lacking. Using whole-stream nitrogen
(N) and phosphorus (P) additions spanning the equivalent of 27 years, we found that average
terrestrial organic C residence time was reduced by ~50% as compared to reference
conditions as a result of nutrient pollution. Annual inputs of terrestrial organic C were rapidly
depleted via release of detrital food webs from N and P co-limitation. This magnitude of
terrestrial C loss can potentially exceed predicted algal C gains with nutrient enrichment
across large parts of river networks, diminishing associated ecosystem services.

N
utrient pollution of freshwater ecosystems
is pervasive and strongly affects carbon (C)
cycling. Excess nutrients stimulate the pro-
duction of C-rich algal biomass but can
also stimulate C loss through increased

organic C mineralization that releases CO2 in-
stead of supporting production of higher trophic
levels and other ecosystem functions (1, 2). Pro-
duction of aquatic life in freshwater ecosystems
is based on algae and organic C of terrestrial
origin. Currently, consideration of nutrient ef-
fects on C cycling in inland waters has focused
on enhancement of algal C sinks in lakes and
less on fates of terrestrial C that may experience
accelerated loss in river networks (3–5).
The processes that lead to nutrient stimulation

of algal C production and terrestrial C mineral-
ization are fundamentally different. Algal pro-
duction increases relatively predictably with the
availability of growth-limiting nutrients (1, 6). In
contrast, mineralization of particulate organic C
(POC) is the more complex result of activity by
multiple trophic levels consisting of microbial
decomposers and detritivorous animals (hereafter
detritivores) (7). Inputs of leaves and wood are
themain sources of POC inmany rivers, support-
ing production of animals and uptake of in-
organic pollutants (8–10). Nutrients stimulate
microbial processing of POC, which results in in-
creased losses of CO2 to the atmosphere (2, 11).
Consumption of microbially colonized POC by
detritivores further contributes to its breakdown
and conversion to smaller particles, which affect
its subsequent transport and processing down-
stream (7).
To determine how moderate nutrient pollu-

tion affects terrestrially derived POC at stream-

reach scales,we testedhow long-term (2- to 5-year),
continuous, flow-proportional nitrogen (N) and
phosphorus (P) additions affected its loss rates
and fates in headwater forest streams (12). We
measured the response of terrestrial C loss rates
in whole 70- to 150-m stream reaches (tables S1
and S2). Carbon loss rates at this spatial scale
are a function of biologically driven breakdown
and hydrological export and have not been pre-
viously assessed in response to human-influenced
stressors (13). We conducted two manipulative
experiments at large spatial and temporal scales
and focused ourmeasurements on forest-derived
leaf litter, because it is the most biologically ac-
tive pool of terrestrial C in forest streams and is
renewed annually (7). After a pretreatment year,
we enriched one stream with N and P at a set
ratio for 5 years in a pairedwatershed design (N+P
experiment; a second stream acted as a control)
and used expandedN andP gradients in a second
experiment in five other streams for 2 years after
a pretreatment year (N×P experiment) (table S1).
Reach-scale terrestrial C loss rates increased

with N and P enrichment across all the concen-
trations we tested (Fig. 1). Discharge, N, P, tem-
perature, and associated random effects (stream
and year) explained 83% of the variation in C loss
rates across 27 annual measurements (table S3).
Standardized regression coefficients indicated that
our moderate additions of N and P contributed
roughly three-fourths of the effect on litter loss
rates as annual cumulative discharge, which var-
ied 87-fold across streams and years (table S3).
Nitrogen and P (r = 0.79) and discharge and
temperature (r = –0.76) were correlated, so their
effects and relative significance cannot be teased
apart fully. However, roughly similar-sized ef-
fects of N and P on loss rates are strong evidence
of co-limitation (Fig. 2 and table S3). Compar-
isons of loss rates from corresponding enriched
and reference streams indicate that median C
loss rates increased 1.65 times with nutrient en-
richment (table S4); the range in these values
(1.02 to 4.49 times) reflects variation due to N
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Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq

Linnarsson
Hermany Munguba, Liqun He, Christer Betsholtz, Charlotte Rolny, Gonçalo Castelo-Branco, Jens Hjerling-Leffler and Sten 
Amit Zeisel, Ana B. Muñoz-Manchado, Simone Codeluppi, Peter Lönnerberg, Gioele La Manno, Anna Juréus, Sueli Marques,

originally published online February 19, 2015DOI: 10.1126/science.aaa1934
 (6226), 1138-1142.347Science 

, this issue p. 1138Science
complex microanatomy of the brain can be revealed by the RNAs expressed in its cells.
classes. Microglia associated with blood vessels were distinguished from look-alike perivascular macrophages. Thus, the 
Oligodendrocytes that seemed to be all of one class were differentiated by their molecular signatures into a half-dozen
reveal more than meets the eye. Interneurons of similar type were found in dissimilar regions of the brain. 

 analyzed the transcriptomes of mouse brain cells toet al.types, many cells in any one category tend to look alike. Zeisel 
The mammalian brain has an extraordinarily large number of cells. Although there are quite a few different cell

Cellular diversity in the brain revealed
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